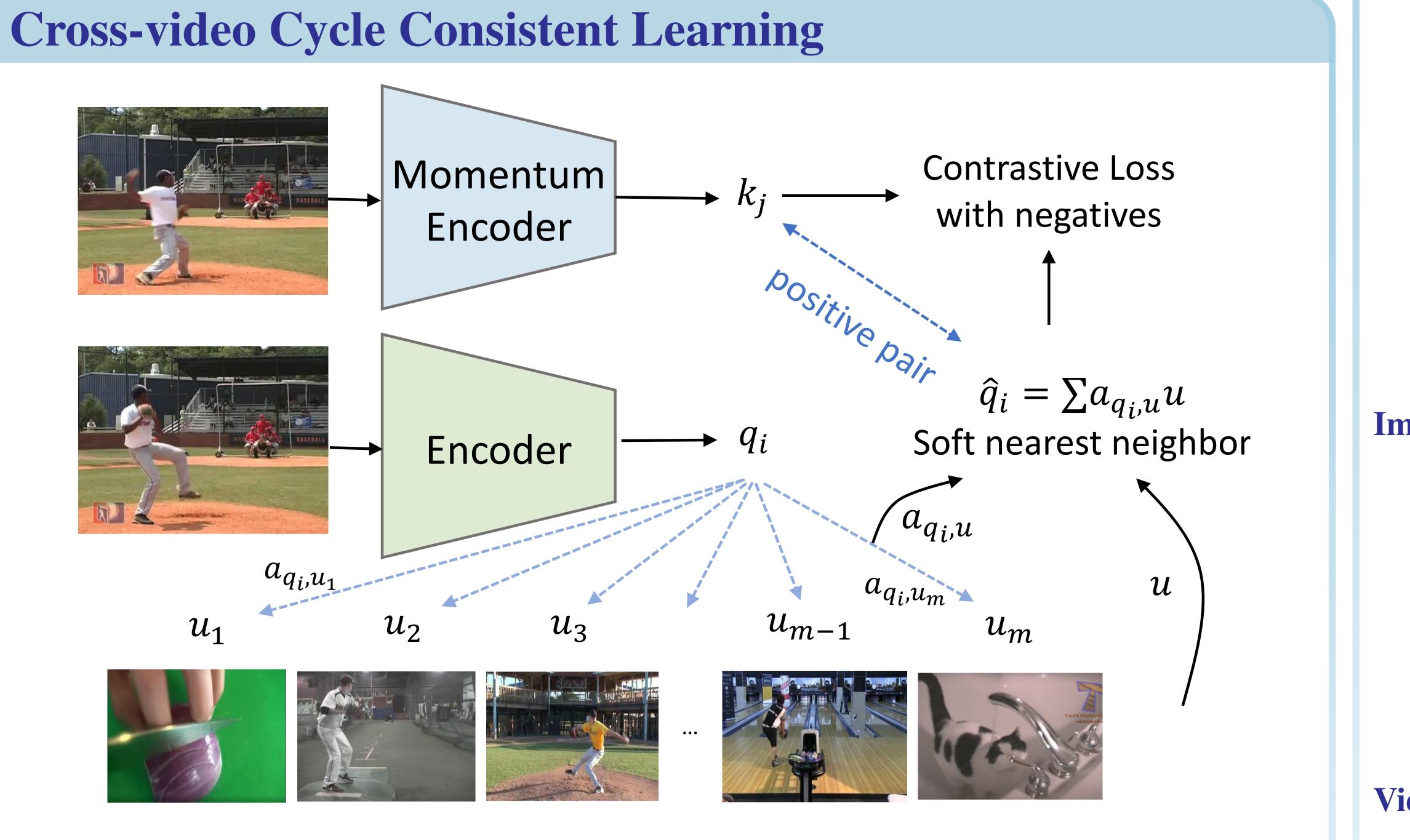
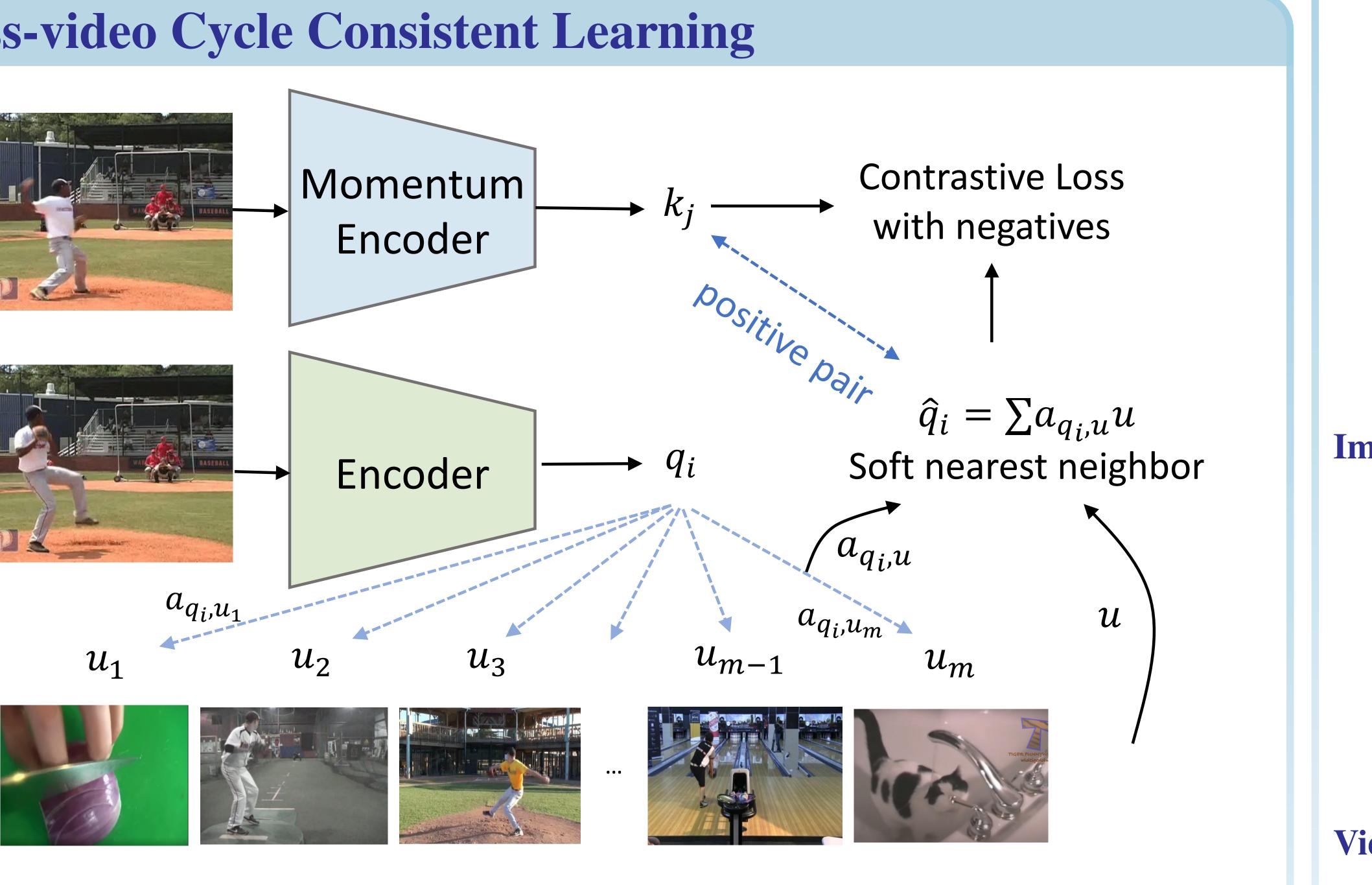


Introduction

- In this paper, we propose a novel contrastive learning method which explores the cross-video relation by using cycle-consistency for general image representation learning.
- We validate our method by transferring our image representation to multiple downstream tasks including visual object tracking, image classification, and action recognition.





Given the encoded representation q_i for an image, • Step 1. Cycle Forward. Find the soft nearest neighbor \hat{q}_i in the candidate neighbor set U

> $\hat{q}_i = \sum sim_i$ $u {\in} U$

where sim(\cdot) calculates the normalized cosine similarity with temperature τ . • Step 2. Cycle Backward. \hat{q}_i should be close to q_i or invariant set of q_i . Thus we use k_i , which is the representation of image within the same video to form the positive pair (\hat{q}_i, k_j) . The

loss is

$$\mathcal{L}_{\text{cycle}} = -\log \frac{\exp\left(\sin\left(\hat{q}_i, k_j\right)/\tau\right)}{\sum_{u \in \{U, k_j\}} \exp\left(\sin\left(\hat{q}_i, u\right)/\tau\right)},\tag{2}$$

Contrastive Learning of Image Representations with Cross Video Cycle-Consistency Haiping Wu Xiaolong Wang McGill University, Mila

$$\mathbf{u}_{\tau}(q_i, u)u,\tag{1}$$

- UC San Diego

Experiments & Results

Visual object tracking.

			OTB	
Method	Backbone	Dataset	Precision	Success
Supervised	ResNet-18	ImageNet	61.4	43.0
SimSiam	ResNet-18	ImageNet	58.8	42.9
MoCo	ResNet-18	ImageNet	62.0	47.0
VINCE	ResNet-18	R2V2	62.9	46.5
Ours	ResNet-18	R2V2-S	65.6	48.6
upervised	ResNet-50	ImageNet	65.8	45.5
SimSiam	ResNet-50	ImageNet	61.0	43.2
MoCo	ResNet-50	ImageNet	63.7	46.5
SeCo	ResNet-50	Kinetics	71.9	51.8
VINCE	ResNet-50	R2V2	40.2	30.0
Ours	ResNet-50	R2V2	69.3	49.2

Image Classification

			ImageNet
Methods	Backbone	Dataset	Top-1 (%)
Supervised	ResNet-50	ImageNet	76.2
MoCo	ResNet-50	ImageNet	67.7
MoCo	ResNet-50	R2V2	53.6
VINCE	ResNet-50	R2V2	54.4
Ours	ResNet-50	R2V2	55.6

Video Action Recognition

Method	Backbone (#Param) Dataset		UCF101
3D-RotNet	3D-R18-full (33.6M)	K-400	62.9
SpeedNet	I3D(12.1M)	K-400	66.7
DPC	3D-R18(14.2M)	K-400	68.2
DPC	3D-R34	K-400	75.7
Video-Pace	R(2+1)D (33.3M)	K-400	77.1
CBT	S3D	K-400	79.5
MemDPC	R-2D3D (32.4M)	K-400	78.1
Temporal-ssl	R(2+1)D (33.3M)	K-400	81.6
VTHCL	3D-R50(31.7M)	K-400	82.1
Ours	R-18 (11.69 M)	R2V2	76.8
Ours	R-50(25.56 M)	R2V2	82.1

UC San Diego