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Abstract

= This paper presents Contrastive
Reconstruction, ConRec - a self-supervised
learning algorithm that obtains image
representations by jointly optimizing a
contrastive and a self-reconstruction loss.

= state-of-the-art contrastive learning methods
(i.,e. SIMCLR) have shortcoming with regard to
fine-grained classification tasks.

= ConRec tackles these shortcomings and
extends the SIMCLR framework by adding (1)
a self-reconstruction task, (2) an attention
mechanism within the contrastive learning
task.

= This is accomplished by applying a simple
encoder-decoder architecture with two heads.

= \We show that both extensions contribute
towards an improved vector representation
for images with fine-grained visual features.
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Figure 1:Augmented images and respective reconstruction predictions

by our ConRec model.
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Figure 2:Learning Framework for Contrastive Reconstruction - ConRec. The ConRec model consists of a fully convolutional encoder-decoder architecture with skip connections as
well as a projection head comprising fully connected layers. The model receives a masked image x; and outputs the unmasked reconstruction target x; as well as the contrastive
Image representation vector z;.
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Figure 3:Model accuracies for training a linear classifier on a subset (1% to 100%) of the labeled representations with different number of classes C and number of samples V.
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Method

In the training process, the model receives a masked image z; and out-
puts the reconstructed image x; = d(e(Z;)) as well as the contrastive
vector representation z; = p(a(e(;))). The training loss is composed
of two parts: the contrastive loss L. and the reconstruction loss L.
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Attention Pooling

= Global average pooling discards some local features in the
encoder output activation map, which may carry relevant
fine-grained information.

= We introduce an attention weighted pooling mechanism that
aggregates the spatial content of the final feature map of the
encoder in a parametric manner.
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Results
Model Frozen Aptos|Flowers| Dogs #Params
SIMCLR U-net v 185.72] 86.01 43.96 4.693V
SIMCLR Attention U-net v 186.06 88.3/7 | 50.31 |4.86/M
ConRec U-net v 18944 90.29 | 4957 |4.86/M
DenseNet121 (ImageNet) v©  86.70|(92.97) (88.07) 8.062M
U-net (Random) 82.11 8154 552 4.693M
DenseNet121 (Random) 6453 82.03 | 57.63 8.062M

Table 1:Linear evaluation results and respective baselines. ImageNet results in parenthesis indicate

flaws in the evaluation as the datasets were included in supervised ImageNet-pretraining.



