

Reasoning-Modulated Representations

Petar Veličković[®]*, Matko Bošnjak[®]*, Thomas Kipf[®], Alexander Lerchner[®], Raia Hadsell[®], Razvan Pascanu^o, Charles Blundell^o

TL;DR;

By incorporating information about the generative process of our task into a pre-trained reasoning module, we learn better representations in a self-supervised learning settings from pixels.

Motivation

Architecture

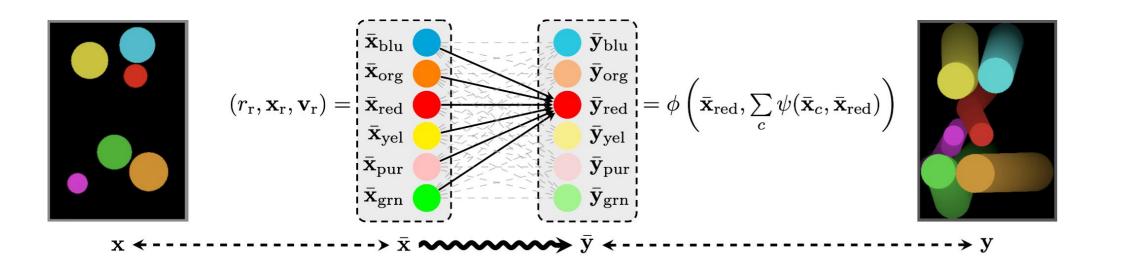
Two-stage encode-process-decode

1st stage: train the $\bar{\mathbf{x}} \rightsquigarrow \bar{\mathbf{y}}$ pathway with the encode-process-decode architecture $\bar{\mathbf{x}} \xrightarrow{f} \mathbf{z} \xrightarrow{P} \mathbf{z}' \xrightarrow{g} \bar{\mathbf{y}}$

- encoder f : learns to map abstract inputs $\bar{\mathbf{x}}$ into a high-dimensional latent \mathbf{z}
- processor *P* : learns a "neural executor" in a high-dimensional space
- decoder g : learns to map the high-dimensional latent \mathbf{z}' into the abstract output $\bar{\mathbf{y}}$

P is now a differentiable module that learned to simulate $\bar{\mathbf{x}} \rightsquigarrow \bar{\mathbf{y}}$ in a high-dimensional space

Predicting the next raw pixel output y from a raw pixel input x is hard. If we were to do that for a system of bouncing balls, knowing that an algorithm underlies this task should help us in some way. With a suitably abstractified data $ar{\mathbf{x}}$, predicting the future abstract state $ar{\mathbf{y}}$ could be as easy as running a force calculation algorithm.

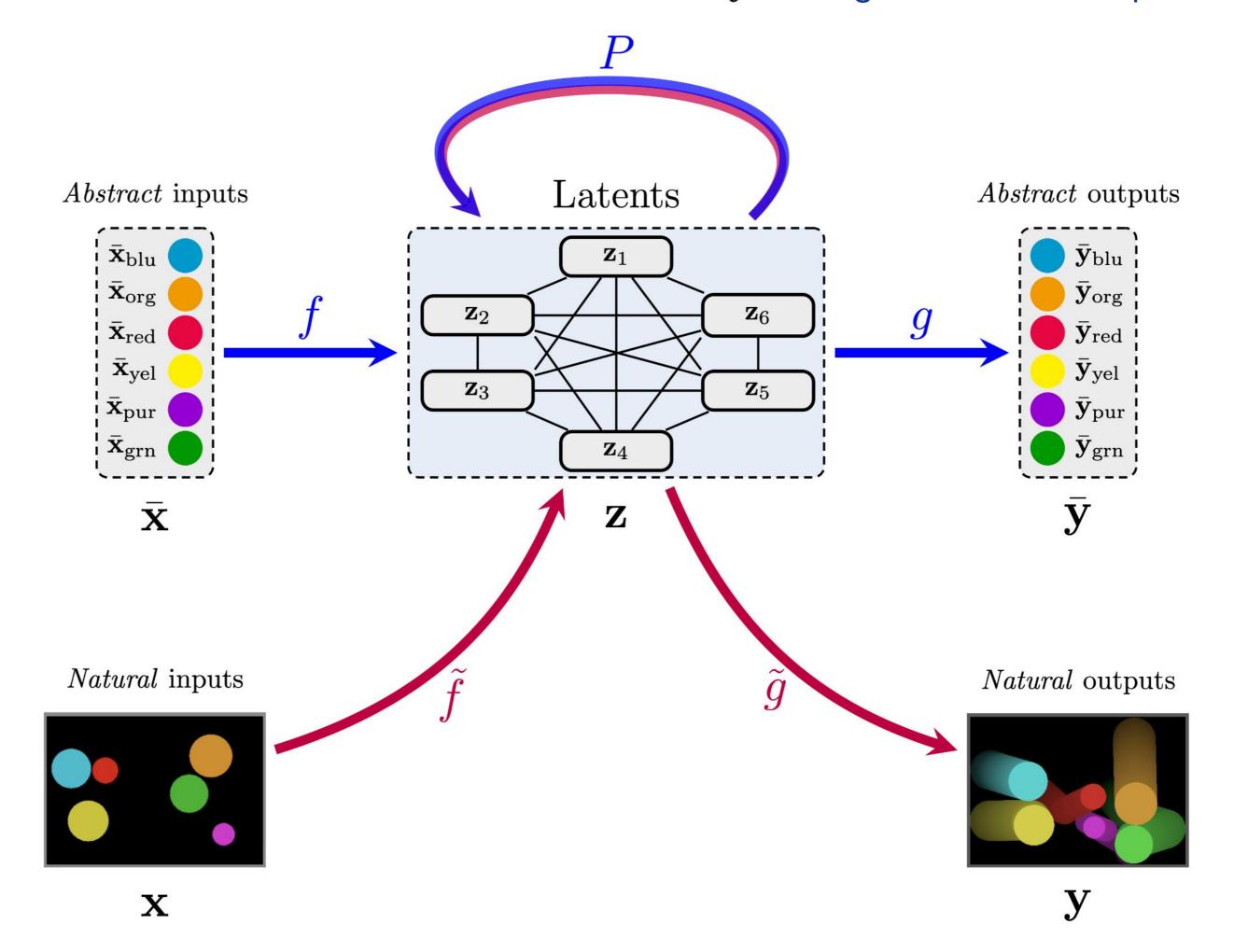


Though this abstraction seems to simplify the path from \mathbf{x} to \mathbf{y} , it convolutes our efforts as now we need to take care of a bigger pipeline $\mathbf{x} \to \bar{\mathbf{x}} \rightsquigarrow \bar{\mathbf{y}} \to \mathbf{y}$ where

 $\mathbf{x}
ightarrow ar{\mathbf{x}}$ requires the knowledge of right abstraction or a massive paired dataset to learn the mapping

 $ar{\mathbf{x}} \rightsquigarrow ar{\mathbf{y}}$ implies a perfect algorithm, which in reality we might not have

 $\bar{\mathbf{y}} \rightarrow \mathbf{y}$ calls for a differentiable renderer or a massive paired dataset to learn the mapping



2nd stage: train the $\mathbf{x} \to \mathbf{y}$ pathway with the encode-process-decode architecture $\mathbf{x} \stackrel{f}{\to} \mathbf{z} \stackrel{P}{\to} \mathbf{z}' \stackrel{\tilde{g}}{\to} \mathbf{y}$ where we swapped out abstract encoders and decoders for natural ones

- encoder \tilde{f} : learns to map pixel inputs x into the high-dimensional latent z
- processor *P* : *frozen* from the previous step to retain the semantics of its mapping

- decoder \tilde{g} : learns to map the high-dimensional latent \mathbf{z}' into the pixel output \mathbf{y}

Bouncing balls

