DeepMind

Reasoning-Modulated Representations

Petar Velickovi¢®*, Matko Bosnjak®*, Thomas Kipf®, Alexander Lerchner®, Raia Hadsell®,
Razvan Pascanu®, Charles Blundell®

TL;DR; Architecture
By incorporating information about the generative
process of our task into a pre-trained reasoning module,
we learn better representations in a self-supervised
learning settings from pixels.

Two-stage encode-process-decode

. _ . . _ P _
Ist stage: train the X ~» ¥ pathway with the encode-process-decode architecture X ENPALNPTICN y
- encoder f : learns to map abstract inputs X into a high-dimensional latent z
- processor P : learns a “neural executor” in a high-dimensional space
- decoder g : learns to map the high-dimensional latent z’ into the abstract output ¥

Motivation

P is now a differentiable module that learned to simulate X ~» ¥ in a high-dimensional space

Predicting the next raw pixel output y from a raw pixel P
Input x is hard. If we were to do that for a system of
bouncing balls, knowing that an algorithm underlies this
task should help us in some way. With a suitably
abstractified data X, predicting the future abstract state y

Abstract inputs Abstract outputs

: : . Xplu @)

could be as easy as running a force calculation algorithm. Ry ‘

e @S

I :ﬁ

el |

o @)

| Xgrn . X

X Z
Though this abstraction seems to simplify the path from , 4 \
. Natural inputs Natural outputs

x to y , it convolutes our efforts as now we need to take i)
care of a bigger pipeline x —+ X ~» y — y where |

X — X requires the knowledge of right abstraction or a
massive paired dataset to learn the mapping

X ~» ¥ implies a perfect algorithm, which in reality we -

. P
might not have

2nd stage: train the X — y pathway with the encode-process-decode architecture x ENPEAPTEN Yy where
we swapped out abstract encoders and decoders for natural ones

- encoderf: learns to map pixel inputs x into the high-dimensional latent z

- processor P : frozen from the previous step to retain the semantics of its mapping

- decoder g :learns to map the high-dimensional latent z’ into the pixel output y

y — y calls for a differentiable renderer or a massive
paired dataset to learn the mapping

Bouncing balls

Training architecture Results

Input

RMR rollout

o B

Ball positions

:> Concat + . :>
. Linear
linear :

MPNN
. J 4
2§ RMR 7.94 + 0.31 (x 1074
Slot Attention| ~_7 Linear + . _4
+ concat + Baseline 947+ 0.24 (X1O)
linear LayerNorm
Ground truth
Video frames
. Table 1. Natural modelling results for Atari 2600. Bit-level F;
At arl reported for slots with high entropy, as in (Anand et al., 2019).
Results are considered significant at p < 0.05 (paired t-test).

Game C-SWM RMR p-value
Training architecture Evaluating representation quality Asteroids 03970002 0.602L0.003 0.006
Berzerk 0.533+0.022 0.528+0.033 0.368
. . . Bowling 0.949+0.003 0.951+0.002 0.110
Atari RAM Atari RAM Atari frame Atari RAM Boxing 0.667+0.011 0.678+0.006 0.040
‘ ‘ . O ij Breakout 0.839+0.014 0.868+0.003 0.002
:'I> Linear Linear Object :> = :> Linear Freeway 0.917+0.018 0.938+0.003 0.020
CNN 3] Frostbite 0.596+0.020 0.641-+0.008 0.004
a H.E.R.O. 0.799+0.016 0.845+0.016 0.004
a R Montezuma 0.829+0.006 0.829+0.023 0.490
Action MPNN Ms. Pac-Man 0.606+0.005 0.604+0.003 0.246
Pitfall! 0.608+0.008 0.633+0.016 0.012
\ J Results Pong 0.765+0.000 0.774=0.004 0.025
a A /l g - Private Eye 0.859+0.009 0.874+0.007 0.043
Object S - Linear + 0l River Raid 0.764+0.003 0.771+0.002 0.008
CNN LayerNorm = — Slgnlﬁcantly better than C-SWMon 12 /19 games Skiing 0.770+0.009 0.769+0.017 0.345
’ _ Indisti ishabl 7 / 19 Space Invaders 0.779+0.004 0.779+0.003 0.363
Atari frame C-SWM ‘ naistinguishable on Tennis 0.728+0.003 0.735+0.002 0.004
N contrastive loss - Venture 0.637+0.005 0.639+0.002 0.337
__________________ Yars’ Revenge 0.772+0.002 0.778+0.001 0.002

