Motivation

Predicting the next raw pixel output y from a raw pixel input x is hard. If we were to do that for a system of bouncing balls, knowing that an algorithm underlies this task should help us in some way. With a suitably abstractified data \tilde{x}, predicting the future abstract state \tilde{y} could be as easy as running a force calculation algorithm.

Though this abstraction seems to simplify the path from x to y, it convolutes our efforts as now we need to take care of a bigger pipeline $x \rightarrow \tilde{x} \rightarrow \tilde{y} \rightarrow y$ where $x \rightarrow \tilde{x}$ requires the knowledge of right abstraction or a massive paired dataset to learn the mapping $\tilde{x} \rightarrow \tilde{y}$ implies a perfect algorithm, which in reality we might not have.$\tilde{y} \rightarrow y$ calls for a differentiable renderer or a massive paired dataset to learn the mapping.

Architecture

Two-stage encode-process-decode

1st stage: train the $x \rightarrow \tilde{y}$ pathway with the encode-process-decode architecture $x \xrightarrow{f} z \xrightarrow{\tilde{P}} z' \xrightarrow{\tilde{g}} \tilde{y}$

- encoder f: learns to map abstract inputs \tilde{x} into a high-dimensional latent z
- processor \tilde{P}: learns a “neural executor” in a high-dimensional space
- decoder \tilde{g}: learns to map the high-dimensional latent z' into the abstract output \tilde{y}

P is now a differentiable module that learned to simulate $x \rightarrow \tilde{y}$ in a high-dimensional space.

2nd stage: train the $x \rightarrow y$ pathway with the encode-process-decode architecture $x \xrightarrow{f} z \xrightarrow{P} z' \xrightarrow{g} y$

where we swapped out abstract encoders and decoders for natural ones

- encoder f: learns to map pixel inputs x into the high-dimensional latent z
- processor P: frozen from the previous step to retain the semantics of its mapping
- decoder g: learns to map the high-dimensional latent z' into the pixel output y

Results

- Significantly better than C-SWM on 12 / 19 games
- Indistinguishable on 7 / 19