Scalable pragmatic communication via selt-supervision

Introduction

» Pragmatic reasoning is an integral part of communication

» Rational Speech Act framework (RSA; [1]) has
successfully modeled pragmatics in small settings

» Large-scale applications of RSA have relied on imitating
human behavior in contextually grounded datasets

« We propose a new approach to scalable pragmatics
using self-supervised learning, building upon results
that characterize pragmatic reasoning in terms of general
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Dataset & task Results
« Existing corpus of color reference games [3]
« Speaker and listener see context of 3 colors; speaker describes g - EZSL?AM {
privately assigned target and listener clicks on inferred target 5 0.2 mm SSL-GD | - Figure 2: prop. of test set
- Simplified the dataset to perform exact AM (18K training rounds) § - ﬁtman " rounds where listener fails
« Only kept rounds with single speaker message and took 100 2 0.1- to select grounad-truth
most frequent messages as space of utterances g |1 .= target color, given human
0.0 speaker utterance
Context  Human Base SSL-AM ssL.Gb si | lable 1:target m* nearly far split close
identical in both condition

information-theoretic principles [2]

Background
Rational Speech Act model (RSA; [1])

Literal listener lo(m|u) o< L(u, m)P(m)
Literal speaker So(u|m) oc L(u, m)exp(—r(u))
Pragmatic speaker s¢(u|m) oc exp(a(logl;—1(m|u) — k(u)))
(

Pragmatic listener l:(m|u) o< s¢(u|m)P(m)

« L(u,m): lexicon function (learned in our models)

 k(u): utterance cost function (estimated from Google
Books n-gram frequencies)

« « > 0: “rationality” parameter (tuned to fit data)

« P(m): prior over meanings (uniform in our models)

New understanding of RSA [2]
« RSA implements an alternating-maximization (AM)
algorithm for optimizing

Gals,l] = Hs(U|M) — aEs[log (M|U) — x(U)]

« Maximizing G, = least effort principle = call this LE-RSA

« With small adjustment, RSA can be grounded in Rate-
Distortion (RD) theory

« Suggests that RSA is only one instance of more general
model class, varying along two axes (Figure 1):

Computational principles —

P B Algorithms & representations:
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g%—’ ontamatios | @ descent (GD), as GD is scalable
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S| — and may enaple generalization
20 methods across domains

T 2. Computational principles:

we focus on LE, but our models

Figure 1 could easily be adapted for RD
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Models

Self-supervised learning (SSL) approach
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« Enrich base agents
with RSA iterations
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« Agents’ pragmatic

N parameters updated
for each context via
GD on LE objective

» Lexicon kept frozen

« Pragmatic parameters
can continually adapt
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architecture, as in [4]
* Same base agents as
in SSL approach

Pragmatic listeners improve upon base listener and achieve
accuracy comparable to SOTA [3,4]

No sig. difference between SSL-AM and SSL-GD

SSL comparable to SL (possibly slightly better) on this
simplified task, while never accessing contextualized data
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Among pragmatic speakers, SSL-GD = best fit to human speaker
Pragmatic speakers sig. decrease fit compared to base speaker
SSL-AM may be exploiting gradedness of neural lexicon,
resulting in pragmatic drift (see Table 1)

Discussion

We proposed scalable self-supervised approach:

learn pragmatic policies by optimizing agent-intrinsic objective
instead of imitating human behavior

SSL-GD more data efficient than SL and more scalable than
SSL-AM, while achieving similar performance

Future research:

« Use SSL-GD to study how pragmatic knowledge might be
shared across contexts and domains, by allowing agents’
parameters to continuously adapt

« Use non-contextualized datasets for training

« Test more complex domains and architectures

Our models execute a form of algorithmic computation [5]
grounded in pragmatic theory and information theory
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