
Graph Contrastive Pre-training for Effective Theorem Reasoning
Zhaoyu Li, Binghong Chen, Xujie Si

McGill University & Mila - Quebec AI Institute & Georgia Institute of Technology Contact: zhaoyu.li@mail.mcgill.ca; binghong@gatech.edu; xsi@cs.mcgill.ca

4. Experimental Evaluation1. Background & Motivation 3. Our Approach

Interactive theorem proving

Why we use machine learning

Interactive theorem proving (ITP) allows humans to develop formal proofs
of mathematical theorems by interacting with a computer system (e.g. Coq1).

Automated reasoning over mathematics proofs is an intriguing challenge:
• it requires machines to understand sophisticated high-order logic for

reasoning.

State a theorem to prove.

Prove the given theorem
by entering a sequence of
commands called tactics.

Inductive nat :=
| O : nat
| S : nat -> nat.

Theorem add_assoc:
forall a b c : nat, (a + b) + c = a + (b + c)

Proof.
intros.
induction a as [|a’].
+ trivial.
+ simpl; rewrite IHa’. trivial.

Qed.

Drawback of Coq ITP:
• Labor-intensive
• Non-trivial expertise

Tactic prediction is to automate
this proof procedure.

Define mathematical
objects.

CompCert2 compiler certification project:
• Six PhD-years
• More than 100,000 lines of proof script

Iris3 concurrent program verification Project:
• Five PhD-years
• More than 143 Coq files
…

Proving procedure in Coq
• The initial goal is the given theorem.
• Tactics decompose the current goal

into several (can be 0) sub-goals.
• The theorem is completely proved

when there is no sub-goals left.
• Each goal shares a same

environment and has an unique local
context with useful premises to use.

• Premises can be used as tactic
arguments to simplify the proof.

Premise selection pre-training task
Existing methods:
• Focus on directly predicting

a sequence of appropriate
tactics that presumably
prove the given theorem.

Human experts:
• Often speculates a high-level plan (e.g.

figure out lemmas or premises that
are going to be used) before writing
down any tactics.

To learn better representations of theorems and premises

Proposed premise selection pretext task:
• Select relevant statements that are useful for proving a given theorem.

Theorem representations and encoding
Theorem add_assoc:

forall a b c : nat, (a + b) + c = a + (b + c)

parse

Surface-level representation:
• Dependent types
• Various syntax sugars
• Very flexible grammar
Kernel-level representation:
• Simple grammar
• Uniform representation
• Represented by ASTs
GIN4 embedding:
• Tree as undirected graph
• Syntax roles as node features
• More powerful than TreeLSTM5

AST

Semantic-guided graph contrastive pre-training

GIN encoding

Observation:
• The relevance between theorems and premises

depends on their semantic relevance.
• Practical premises that can be used as tactic

arguments often share the same semantic
components with the current goal.

We employ the existing theorems and premises as our learning pairs:
• Positive pairs: The goal and premises that can be used as tactic

arguments in the environment or local context
• Negative pairs: The goal and other premises

InfoNCE loss

Tactic prediction decoder
We use the same decoder in ASTactic6:
• Conditioned on embeddings from our encoder, the decoder generates

tactic and its arguments by selecting production rules and argument
tokens following a context-free grammar (CFG) for its tactic space.

Experimental setup
Premise selection:
• Proposed PremiseGym dataset: 10533 instances for training, 3783

instance for testing.
• Each instances has a goal to decompose, a positive premises and more

than 8 negative premises.
Tactic prediction:
• CoqGym6 dataset: 189824 tactics for training, 78494 tactics for testing.

Premise selection results
TreeLSTM correctly selects 1399 premises (36.98%) for the given
theorems. Our encoder successfully predicts 1704 premises (45.04%),
which obtains more than 21.8% relative improvement.

Tactic prediction results

1. Barras, B. et al. “The Coq proof assistant reference manual: Version 6.1.” PhD thesis, Inria, 1997.
2. Leroy, X. et al. “Compcert - a formally verified optimizing compiler.” In ERTS 2016: Embedded Real

Time Software and Systems, 8th European Congress, 2016.
3. Jung, R. et al. “ Iris from the ground up: A modular foundation for higher-order concurrent

separation logic.” Journal of Functional Programming, 28, 2018.
4. Xu, K. et al. “How powerful are graph neural networks?” arXiv preprintarXiv:1810.00826, 2018.
5. Tai, K. S. et al. “Improved semantic representations from tree-structured long short-term memory

networks.” arXiv preprint arXiv:1503.00075, 2015.
6. Yang, K. et al. “Learning to prove theorems via inter-acting with proof assistants.” In International

Conference on Machine Learning, pp. 6984–6994. PMLR, 2019.

Input:
• A goal 𝑔 to be proved and some existing premises 𝑝1, 𝑝2, ⋯, 𝑝𝑁 in

the environment or local context that can be used.
Output:
• A tactic with its arguments (if it can carry).

Challenges:
• How to leverage human expert insight to design our model?
• How to represent theorems and premises effectively?
• How to predict the tactic and its arguments?

2. Problem & Challenges

Experimental results

The overview of
NeuroTactic’s
framework

