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1. Background & Motivation

Automated reasoning over mathematics proofs is an intriguing challenge:
* it requires machines to understand sophisticated high-order logic for
reasoning.

Interactive theorem proving

Interactive theorem proving (ITP) allows humans to develop formal proofs
of mathematical theorems by interacting with a computer system (e.g. Coq?).
Inductive nat :=

Define mathematical | O : nat
— . .
objects. | S : nat-> nat.

Theorem add_assoc:

State a theorem to prove. - forallabc:nat, (a+b)+c=a+(b+c)

X Proof.
Prove the given theorem intros.
by entering a sequence of  —p T‘t’lﬁ‘?"?” aas [lal.
. rivial.
commands called tactics. + simpl; rewrite IHa'. trivial.
Qed.
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3. Our Approach
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Premise selection pre-training task

Proving procedure in Coq

Human experts:

* Often speculates a high-level plan (e.g.
figure out lemmas or premises that
are going to be used) before writing
down any tactics.

Existing methods:

* Focus on directly predicting
a sequence of appropriate
tactics that presumably
prove the given theorem.

To learn better representations of theorems and premises 1

Proposed premise selection pretext task:
* Select relevant statements that are useful for proving a given theorem.

* The initial goal is the given theorem.

* Tactics decompose the current goal
into several (can be 0) sub-goals.

* The theorem is completely proved
when there is no sub-goals left. =

* Each goal shares a same
environment and has an unique local Vi@ simpl: 12 -
context with useful premises to usi—z e

* Premises can be used as tactic

trivial.

e+ G rn=S@s b o
arguments to simplify the proof.

forallabc: nat, (a+b) +c=a+(b+c)

local context
goal

intros.

Theorem representations and encoding

Why we use machine learning

Drawback of Coq ITP: CompCert? compiler certification project:
* Labor-intensive == + Six PhD-years
* Non-trivial expertise * More than 100,000 lines of proof script

\‘%“63‘3 Iris3 concurrent program verification Project:
N e‘V * Five PhD-years
* More than 143 Coq files

Tactic prediction is to automate
this proof procedure.

2. Problem & Challenges

Input:

* Agoal g to be proved and some existing premises py, Py, ***, Py in
the environment or local context that can be used.

Output:

« Atactic with its arguments (if it can carry).

Challenges:

* How to leverage human expert insight to design our model?
* How to represent theorems and premises effectively?

¢ How to predict the tactic and its arguments?
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Surface-level representation: ~ ==  Theorem add_assoc:
« Dependent types forallabc:nat, (@a+b)+c=a+(b+c)

* Various syntax sugars parse

* Very flexible grammar e
AST G//'%

Kernel-level representation:
GIN encoding l

¢ Simple grammar
[reswreveer |

* Uniform representation —_—
Semantic-guided graph contrastive pre-training

* Represented by ASTs

GIN* embedding:

« Tree as undirected graph

¢ Syntax roles as node features

* More powerful than TreeLSTM>

Observation:

* The relevance between theorems and premises
depends on their semantic relevance.
Practical premises that can be used as tactic
arguments often share the same semantic
components with the current goal.

a, b, c:nat
IHa':a'+b+c=a + (b+c)

S(@+(b+c)=S(a+(b+c)

We employ the existing theorems and premises as our learning pairs:
* Positive pairs: The goal and premises that can be used as tactic
arguments in the environment or local context
* Negative pairs: The goal and other premises
Goal:

Negative premises
— @+b)+c=a+(b+0) a+b=b+a

O0xbxec=0
InfoNCE loss .

Positive premise
0+b+c=0+(b+c) —

Tactic prediction decoder

We use the same decoder in ASTactic®:

* Conditioned on embeddings from our encoder, the decoder generates
tactic and its arguments by selecting production rules and argument
tokens following a context-free grammar (CFG) for its tactic space.
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4. Experimental Evaluation

Experimental setup

Premise selection:

* Proposed PremiseGym dataset: 10533 instances for training, 3783
instance for testing.

* Each instances has a goal to decompose, a positive premises and more
than 8 negative premises.

Tactic prediction:

« CoqGym® dataset: 189824 tactics for training, 78494 tactics for testing.

Experimental results

Tactic prediction results

. ‘ ASTactic NeuroTactic
Project ] ST el ST NGO Total
! TreeLSTM | TreeLSTM+GCL | GIN:GCL

PolTac 79 59 59 190
UnifySL 677 713 722 2865
angles 10 7 6 199
buchberger 34 33 34 299
chinese 97 127 126 462
coq-library-

undecidability 196 233 224 3181
coq- 0 0 0 1
procrastination

coqoban 0 0 0 7
coqrel 20 19 23 94
coquelicot 281 281 283 3498
dblib 73 86 87 371
demos 17 15 20 192
dep-map 16 9 10 142
disel 3 4 4 47
fermat4 5 10 11 45
fundamental- 127 122 127 | 420
arithmetics

goedel 999 993 995 6640
hoare-tut 3 3 3 27
huffman 5 3 6 108
{ﬁ;iig;]f““e' 5470 7352 | 7531 | 28672
tree-automata 3778 3761 3809 | 15201
verdi 239 232 235 1917
verdi-raft 1714 1747 1802 | 11063
weak-up-to 0 2 1 52
zchinese 40 47 52 247
zfc 67 83 72 461
zorns-lemma 337 337 360 2093
Total | 14287 | 16278 | 16602 | 78494

Premise selection results
TreeLSTM correctly selects 1399 premises (36.98%) for the given
theorems. Our encoder successfully predicts 1704 premises (45.04%),
which obtains more than 21.8% relative improvement.
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