

Graph Contrastive Pre-training for Effective Theorem Reasoning

Zhaoyu Li, Binghong Chen, Xujie Si

1. Background & Motivation

Automated reasoning over mathematics proofs is an intriguing challenge: it requires machines to understand sophisticated high-order logic for reasoning.

Interactive theorem proving

Interactive theorem proving (ITP) allows humans to develop formal proofs of mathematical theorems by interacting with a computer system (e.g. Coq¹).

+ trivial + simpl; rewrite IHa'. trivial. Ded

Proving procedure in Coq

Why we use machine learning

lough data

Drawback of Cog ITP: Labor-intensive Non-trivial expertise

- CompCert² compiler certification project: Six PhD-years
 - More than 100,000 lines of proof script
 - Iris³ concurrent program verification Project: Five PhD-years

More than 143 Cog files

Tactic prediction is to automate ... this proof procedure.

2. Problem & Challenges

Input:

• A goal g to be proved and some existing premises p_1, p_2, \dots, p_N in the environment or local context that can be used.

Output:

· A tactic with its arguments (if it can carry).

Challenges:

- How to leverage human expert insight to design our model?
- How to represent theorems and premises effectively?
- · How to predict the tactic and its arguments?

- arguments in the environment or local context
- Negative pairs: The goal and other premises

Negative premises Positive premise (a + b) + c = a + (b + c)a + b = b + a0 + b + c = 0 + (b + c) $0 \times b \times c = 0$

InfoNCE loss

Tactic prediction decoder

We use the same decoder in ASTactic⁶:

 Conditioned on embeddings from our encoder, the decoder generates tactic and its arguments by selecting production rules and argument tokens following a context-free grammar (CFG) for its tactic space.

4. Experimental Evaluation

Experimental setup

- Premise selection:
- Proposed PremiseGym dataset: 10533 instances for training, 3783 instance for testing.
- Each instances has a goal to decompose, a positive premises and more than 8 negative premises.
- Tactic prediction:
- CoqGym⁶ dataset: 189824 tactics for training, 78494 tactics for testing.

Experimental results

factic prediction results				
Project	ASTactic NeuroTactic		Tata	
	TreeLSTM	TreeLSTM+GCL	GIN+GCL	Tota
PolTac	79	59	59	19
UnifySL	677	713	722	286
angles	10	7	6	19
buchberger	34	33	34	29
chinese	97	127	126	46
coq-library- undecidability	196	233	224	318
coq- procrastination	0	0	0	
coqoban	0	0	0	
coqrel	20	19	23	94
coquelicot	281	281	283	349
dblib	73	86	87	37
demos	17	15	20	19
dep-map	16	9	10	14
disel	3	4	4	4
fermat4	5	10	11	4
fundamental- arithmetics	127	122	127	42
goedel	999	993	995	664
hoare-tut	3	3	3	2
huffman	5	3	6	10
jordan-curve- theorem	5470	7352	7531	2867
tree-automata	3778	3761	3809	1520
verdi	239	232	235	191
verdi-raft	1714	1747	1802	1106
weak-up-to	0	2	1	5
zchinese	40	47	52	24
zfc	67	83	72	46
zorns-lemma	337	337	360	209
Total	14287	16278	16602	7849

Premise selection results

TreeLSTM correctly selects 1399 premises (36.98%) for the given theorems. Our encoder successfully predicts 1704 premises (45.04%), which obtains more than 21.8% relative improvement.

- 1. Barras, B. et al. "The Cog proof assistant reference manual: Version 6.1." PhD thesis, Inria, 1997
- 2. Leroy, X. et al. "Compcert a formally verified optimizing compiler." In ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress, 2016.
- 3. Jung, R. et al. " Iris from the ground up: A modular foundation for higher-order concurrent separation logic." Journal of Functional Programming, 28, 2018.
- 4. Xu, K. et al. "How powerful are graph neural networks?" arXiv preprintarXiv:1810.00826, 2018.
- 5. Tai, K. S. et al. "Improved semantic representations from tree-structured long short-term memory networks." arXiv preprint arXiv:1503.00075, 2015.
- 6. Yang, K. et al. "Learning to prove theorems via inter-acting with proof assistants." In International Conference on Machine Learning, pp. 6984-6994. PMLR, 2019.