
Notation. 𝐱 is an original input image. 𝑡! is an augmentation function 
parameterized by 𝜔. 𝐯 = 𝑡! 𝐱 is the augmented sample of 𝐱 by 𝑡!. 𝑓 is a 
CNN feature extractor such as ResNet. 𝑔 is a projection MLP that is widely 
used in recent SSL methods [1-5]. 𝜙 is a prediction MLP for AugSelf.

For learning augmentation-aware information, we learn to predict the 
difference between two augmented samples. Formally, auxiliary 
augmentation-aware self-supervised loss (AugSelf) is defined by

where 𝜔"#$$
%&' is the difference between augmentation-specific parameters.

Benefits of AugSelf: it can …
• preserve augmentation-aware information for downstream tasks
• be easily incorporated with [1-5] thanks to its self-supervision design

In this work, we mainly use 𝒜(&')*+$ = {crop, color_jitter} and MSE for ℒ%&'.

Self-supervised learning (SSL) learns representations via a pretext task that 
requires to predict self-supervision constructed from only input signals. 
Recent SSL methods often aim at learning invariance to data augmentations
• Contrastive methods (e.g., MoCo [1], SimCLR [2])
• Negative-free methods (e.g., BYOL [3], SimSiam [4])

• Clustering-based methods (e.g., SwAV [5])

Question: is learning invariance to a given set of augmentations always 
beneficial to representation learning? To answer this question,
• Pretrain ResNet-18 on STL10 with varying color jittering strength s.
• Compute mutual information between the learned representation Z=f(x) 

and color information C(x) encoded by color histograms.

• Transfer the learned representation to color-sensitive downstream tasks.

Observations:
• Stronger color augmentations ⇒ color-relevant information loss
• Less color information ⇒ performance drop in color-sensitive tasks
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Improving Transferability of Representations
via Augmentation-Aware Self-Supervision

TL; DR. Learning augmentation-aware information by predicting the difference between two augmented 
samples improves the transferability of representations for various downstream tasks.
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Summary of Contribution

• For learning augmentation-aware information, we suggest to optimize an 
auxiliary self-supervised loss (AugSelf) that learns to predict difference 
between augmentation parameters of two randomly augmented samples.

• Extensive experiments demonstrate that (1) AugSelf can improve 
learned representations’ transferability for various downstream tasks, 
and also (2) AugSelf can be easily incorporated with recent SSL methods 
with a negligible additional training cost.

Object localization (blue is ground-truth & red is prediction)

SelfAug improves the transferability of representations in various standard 
(first table) and few-shot (second table) downstream classification tasks

SelfAug can be incorporated with various SSL methods (STL10 pretraining)

Research Question: how to prevent the information loss comes from 
learning the invariance?
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Image retrieval: SimSiam (left) vs SimSiam+AugSelf (right, ours)


