Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Hankook Lee¹, Kibok Lee², Kimin Lee³, Honglak Lee^{4,5}, Jinwoo Shin¹ ¹KAIST, ²Amazon Web Services, ³University of California, Berkeley, ⁴University of Michigan, ⁵LG AI Research

TL; DR. Learning augmentation-aware information by predicting the difference between two augmented samples improves the transferability of representations for various downstream tasks.

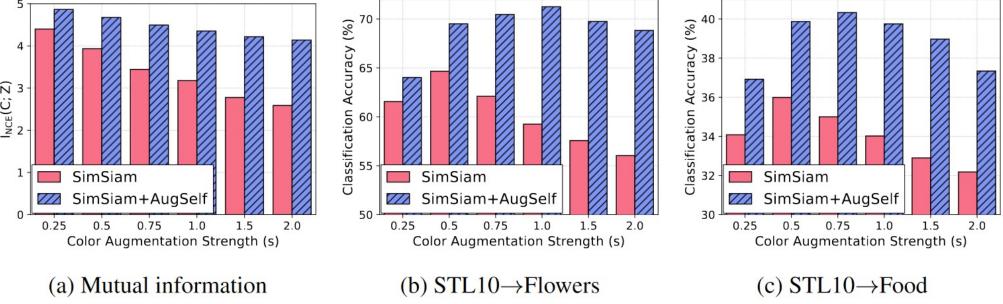
Background & Motivation

Self-supervised learning (SSL) learns representations via a pretext task that requires to predict self-supervision constructed from only input signals. Recent SSL methods often aim at learning invariance to data augmentations

- Contrastive methods (e.g., MoCo [1], SimCLR [2])
- Negative-free methods (e.g., BYOL [3], SimSiam [4])
- Clustering-based methods (e.g., SwAV [5])

Question: is learning invariance to a given set of augmentations always beneficial to representation learning? To answer this question,

- Pretrain ResNet-18 on STL10 with varying color jittering strength s.
- Compute mutual information between the learned representation Z=f(x) and color information C(x) encoded by color histograms.
- Transfer the learned representation to color-sensitive downstream tasks.



Observations:

- Stronger color augmentations \Rightarrow color-relevant information loss
- Less color information \Rightarrow performance drop in color-sensitive tasks

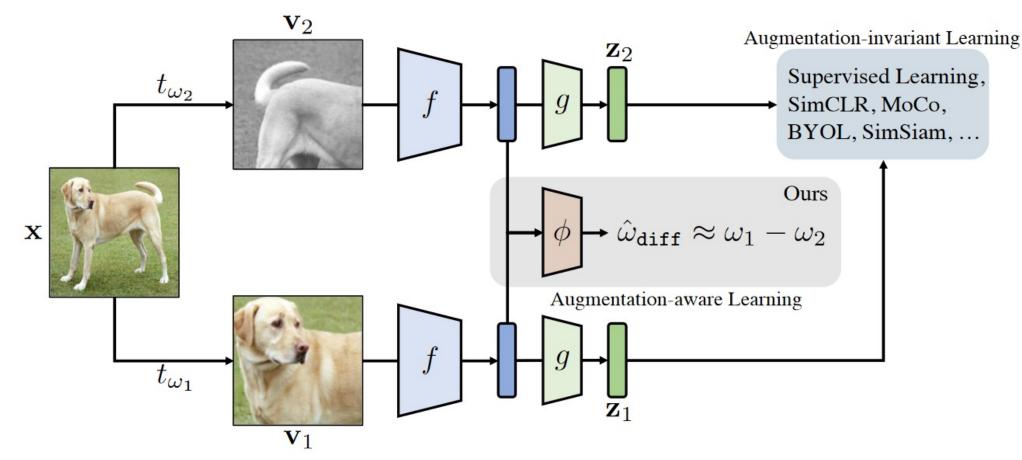
Research Question: how to prevent the information loss comes from learning the invariance?

Summary of Contribution

- For learning augmentation-aware information, we suggest to optimize an auxiliary self-supervised loss (**AugSelf**) that learns to predict difference between augmentation parameters of two randomly augmented samples.
- Extensive experiments demonstrate that (1) **AugSelf** can improve learned representations' transferability for various downstream tasks, and also (2) **AugSelf** can be easily incorporated with recent SSL methods with a negligible additional training cost.

Method

Notation. x is an original input image. t_{ω} is an augmentation function parameterized by ω . $\mathbf{v} = t_{\omega}(\mathbf{x})$ is the augmented sample of \mathbf{x} by t_{ω} . f is a CNN feature extractor such as ResNet. g is a projection MLP that is widely used in recent SSL methods [1-5]. ϕ is a prediction MLP for AugSelf.



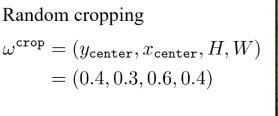
For learning augmentation-aware information, we learn to predict the difference between two augmented samples. Formally, auxiliary augmentation-aware self-supervised loss (AugSelf) is defined by

 $\mathcal{L}_{\texttt{AugSelf}}(\mathbf{x}, \omega_1, \omega_2; \theta) = \sum_{\texttt{aug} \in \mathcal{A}_{\texttt{AugSelf}}} \mathcal{L}_{\texttt{aug}}(\phi_{\theta}^{\texttt{aug}}(f_{\theta}(\mathbf{v}_1), f_{\theta}(\mathbf{v}_2)), \omega_{\texttt{diff}}^{\texttt{aug}})$ where $\omega_{\rm diff}^{\rm aug}$ is the difference between augmentation-specific parameters.

Benefits of AugSelf: it can ...

- preserve augmentation-aware information for downstream tasks
- be easily incorporated with [1-5] thanks to its self-supervision design

In this work, we mainly use $\mathcal{A}_{AugSelf} = \{crop, color_jitter\}$ and MSE for \mathcal{L}_{aug} .



 $(\lambda_{\texttt{bright}}, \lambda_{\texttt{contrast}}, \lambda_{\texttt{sat}}, \lambda_{\texttt{hue}})$ = (0.3, 1.0, 0.8, 1.0)

References

[1] He et al., Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

- [2] Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020
- [3] Grill et al., Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- [4] Chen & He, Exploring Simple Siamese Representation Learning, 2020

[5] Caron et al., Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, NIPS 2020

Experiment

SelfAug improves the transferability of representations in various standard (first table) and few-shot (second table) downstream classification tasks

Method	CIFAR10	CIFAR10	00 Food	MIT67	Pets	Flowers	Caltech	101 Cars	Aircraft	DTD	SUN397
				ImageNet1	00-pretr	ained Res	Net-50				
SimSiam + AugSelf	86.89 88.80	66.33 70.27	61.48 65.63	65.75 67.76	74.69 76.34	88.06 90.70	84.1 85.3		48.63 49.76	65.11 67.29	50.60 52.28
MoCo v2 + AugSelf	84.60 85.26	61.60 63.90	59.37 60.78	61.64 63.36	70.08 73.46	82.43 85.70	77.2 78.9		41.21 39.47	64.47 66.22	46.50 48.52
Supervised + AugSelf	86.16 86.06	62.70 63.77	53.89 55.84	52.91 54.63	73.50 74.81	76.09 78.22	77.5 77.4		36.78 38.02	61.91 62.07	40.59 41.49
			FC1	00	CUB200		0	Plant Disease			
	Method		(5, 1)	(5, 5)	(5,	1)	(5, 5)	(5, 1)	(5, 5)		
	ImageNet100-pretrained ResNet-50									_	
	SimSiam + AugSelf		6.19±0.36 9.37±0.40	50.36±0.38 55.27±0.38	45.56 48.08		2.48±0.48 5.27±0.46	75.72±0.46 77.93±0.46	89.94±0.31 91.52±0.29		
	MoCo v2 + AugSelf		1.67±0.33 5.02±0.36	43.88±0.38 48.77±0.39	41.67 44.17		5.92±0.47 7.35±0.48	65.73±0.49 71.80±0.4 7	84.98±0.36 87.81±0.33		
	Supervised + AugSelf		3.15±0.33 4.70±0.35	46.59±0.37 48.89±0.38	46.57 47.58		3.69±0.46 5.31±0.45	68.95±0.47 70.82±0.46	88.77±0.30 89.77±0.29		

SelfAug can be incorporated with various SSL methods (STL10 pretraining)

Method	AugSelf (ours)	STL10	CIFAR10	CIFAR100	Food	MIT67	Pets	Flowers
SimCLR [2]	\checkmark	84.87 84.99	78.93 80.92	48.94 53.64	31.97 36.21	36.82 40.62	43.18 46.51	56.20 64.31
BYOL [12]	\checkmark	86.73 86.79	82.66 83.60	55.94 59.66	37.30 42.89	42.78 46.17	50.21 52.45	66.89 74.07
SWAV [11]	\checkmark	82.21 82.57	81.60 82.00	52.00 55.10	29.78 33.16	36.69 39.13	37.68 40.74	53.01 61.69

Object localization (blue is ground-truth & red is prediction)

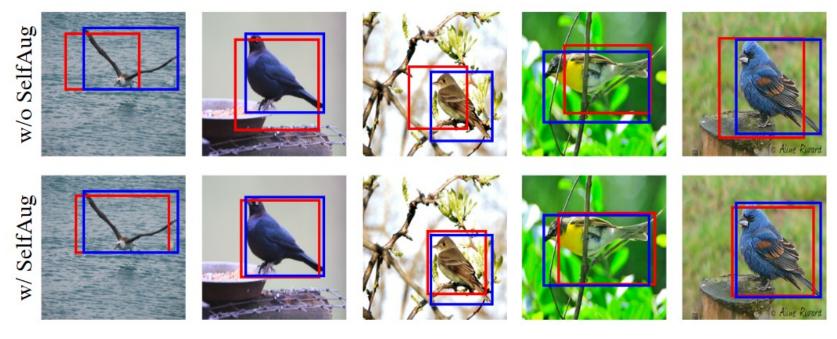


Image retrieval: SimSiam (left) vs SimSiam+AugSelf (right, ours) Nearest neighbors

