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We propose to personalize a human pose estimator given a set of test images of a
person without using any manual annotations. To help the model generalize to
different unknown environments and unseen persons. Instead of using a fixed
model for every test case, we adapt our pose estimator during test time to exploit
person-specific information.

(1) Results of pose estimation on three different datasets. Feat. Shared (rotation)
1s a counterpart using the naive self-supervised task of rotation prediction. Feat.
Shared (keypoint) 1s a counterpart using self-supervised keypoints, but does not
use the Transformer design. Transformer (keypoint) is our proposed method. The
proposed method shows significant improvement over baseline thanks to TTP

Architecture of our proposed model. We use a reconstruction task to generate and also surpasses other alternative methods.
Method self-supervised keypoints. We further predict the supervised keypoints from them
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a. Self-supervised Keypoint Estimation: For the self-supervised task, we use input image keypoints keypoints reconstruction
an 1mage reconstruction task to perform disentanglement of human ,
structure and appearance, which leads to self-supervised keypoints as
intermediate results.

(2) Improvement vs. Frame ID in online scenario. We plot the gap between the
Test-Time Personalization and the baseline model for each frame step. We adopt
the averaged metric across all test videos. In most cases, we observe TTP
Improves more over time.

b. Supervised Keypoint Estimation with a Transformer: For the supervised
part, we use a transformer to compute an affinity matrix W, which models
the relation between the self-supervised and supervised keypoints. The
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