Continual-wav2vec2: an Application of Continual Learning for Self-Supervised Automatic Speech Recognition

Samuel Kessler†*, Bethan Thomas‡ and Salah Karout†

†University of Oxford, ‡Huawei R&D Cambridge

Objectives

- Learn a new self-supervised language representation more efficiently by re-using previous representations.
- Retain performance and prevent forgetting of the 1-st task when learning a new task.

Continual Learning

\[\mathcal{T}_1 \rightarrow \mathcal{T}_2 \rightarrow \mathcal{T}_3 \rightarrow \ldots \]

wav2vec2.0

SSL to learn speech representation then finetune on small labelled dataset [1].
- Expensive! Training takes 2 days on 64 GPUs.
- What if we want to learn a new language representation?
- Learning different language representations can be different \(\mathcal{T} \).

Wav2vec2.0 components:
- CNN feature extractor \(f : \mathcal{X} \rightarrow \mathcal{C} \).
- MHSA context network \(g : \mathcal{Z} \rightarrow \mathcal{C} ' \).
- Discrete quantizer \(\mathcal{Z} \rightarrow \mathcal{Q} \).

 wav2vec2.0 (cont.)

Language Adapters

- Adapters are intermediate FC layers which are inserted into a deep network and allow adaptation to a new task.
- Language Adapters (LAs) have been shown to be a parameter efficient way to allow BERT to adapt to a new task [3].
- We also use LAs to allow wav2vec2.0 to learn a new self-supervised language representation efficiently.
- This is a modular approach to Continual Learning.

Continual-wav2vec2.0

Continual Learning for SSL applied to ASR

Main Results

Figure 1: The wav2vec2 model takes as input raw waveform \(\mathcal{X}, f(·) \) is a convolutional feature extractor and \(g(·) \) is a masked transformer encoder.

Figure 2: A. MHSA layer in the context network, \(g(·) \), of wav2vec2.0. B. cwsav2vec2 layers of \(g(·) \) with LAs. C. LA module.

Efficiency

Conclusion

We have introduced continual-wav2vec2.0 which solves both of our original objectives. It 1) is able to learn a new language representation successfully and do so efficiently by decreasing training times from around 15 to 10 days. Also 2) it is able to completely prevent forgetting. Future directions are to scale to a another 1 or 2 tasks and explore mechanisms that allow LAs to combine.

References

*Work done during an internship at Huawei R&D Cambridge.