Can contrastive learning avoid shortcut solutions’ %1 University of

Pittsburgh

Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, Suvrit Sra MITCSAIL

TL;DR: Understanding shortcuts in contrastive learning | Reducing shortcuts: implicit feature modification (IFM)
We study shortcut learning in contrastive learning:
1. Proof that shortcuts can occur . Goal: use instance discrimination difficulty observation
2. Different shortcuts are used depending on task difficulty Definition (informal): For a latent feature z (e.g. color or to develop method for reducing feature suppression
' _ _ shape), an encoder f'is said to suppress z if the conditional without tradeoffs
3. Based on the previous observation, we propose |IFM, distribution £(x) | z (W.r.t rv x) does not depend on z
which reduces shortcuts, and improve downstream Implicit feature modification (IFM):

1. perturb embeddings to remove components currently
used to distinguish positive pairs from negatives.

2. Solve instance discrimination using both the original
embeddings, and perturbed embeddings

generalization |
Theorem (informal):

Under certain assumptions on positive pair generation, for
any feature z there is an

f* € arg mfin Z InfoNCE(/)

Contrastive learning and the shortcut problem
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such that f* suppresses z. Perturbations applied in
latent space enable:

1. efficient computation
2. modifying semantics
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A shortcutis a “simple” decision rule, that yields strong
training performance, but fails to generalize to unseen data [1].

Dataset has

three features: _ |
color, shape, IFM can reduce shortcut learning on synthetic data
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— T = f(x™T = f(x~ are learned at the cost of others
\Where V=), v Jlx™), and v = flx; ) J U _ [1] Shortcut learning in deep neural networks, Geirhos et al.




