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A shortcut is a  “simple” decision rule, that yields strong 
training performance, but fails to generalize to unseen data [1]. 

Understanding shortcuts in contrastive learning

Contrastive learning and the shortcut problem

TL;DR:  
We study shortcut learning in contrastive learning: 
1. Proof that shortcuts can occur 
2. Different shortcuts are used depending on task difficulty 
3. Based on the previous observation, we propose IFM, 

which reduces shortcuts, and improve downstream 
generalization
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Reducing shortcuts: implicit feature modification (IFM)

[1] Shortcut learning in deep neural networks, Geirhos et al.

Goal: use instance discrimination difficulty observation 
to develop method for reducing feature suppression 
without tradeoffs 

IFM also improves performance on downstream object 
classification tasks

IFM can reduce shortcut learning on synthetic data

A consequent pathology: linear 
readout error on downstream 
tasks can be negatively correlated 
with InfoNCE loss

Theorem (informal): 
Under certain assumptions on positive pair generation, for 
any feature !  there is an  

!  

such that  !  suppresses ! . 
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Definition (informal): For a latent feature !  (e.g. color or 
shape), an encoder !  is said to suppress !  if the conditional 
distribution !  | !  (w.r.t rv ! ) does not depend on !  
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Deep networks often learn shortcuts, causing: 
1. Vulnerability to adversarial examples 
2. Non-robustness to distribution shift 
3. Failure out-of-distribution 

We find that the choice of which features are learned is 
determined by the difficulty of the instance 
discrimination task

1. When task is easy, only 
simple features (.e.g color) 
are learned

2. Harder tasks improves 
representation of some features, 
at the cost of others
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Dataset has 
three features: 
color, shape, 
texture

This work studies factors influencing 
shortcut learning in contrastive learning 

Contrastive representation learning trains an encoder !  to 
discriminate (i.e. distinguish) positive (       ) and negative 
(       ) instances instances. Achieved by optimizing the 
InfoNCE loss :
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Where !v = f(x), v+ = f(x+), and v−
i = f(x−

i )

Perturbations applied in 
latent space enable: 
1. efficient computation 
2. modifying semantics 

max
δ+,δ−

i

ℓ(v, v+ + δ+, {δ− + δ−}i)

Implicit feature modification (IFM):  
1. perturb embeddings to remove components currently 

used to distinguish positive pairs from negatives.  
2. Solve instance discrimination using both the original 

embeddings, and perturbed embeddings


