

SIMONe: View-Invariant, Temporally-Abstracted Object **Representations via Unsupervised Video Decomposition**

Rishabh Kabra, Daniel Zoran, Goker Erdogan, Loic Matthey, Antonia Creswell, Matthew Botvinick, Alexander Lerchner, Christopher P. Burgess

Desiderata

- Decomposition of multi-object scenes from RGB videos without supervision.
- Handles changing camera pose; simultaneous inference of scene contents and viewpoint from correlated views (i.e. sequential observations of a moving agent).
- Learning of structure across diverse scene instances (i.e. procedurally sampled contents);
- Object representations which summarize static object attributes like color or shape, view-dissociated properties like position or size, as well as time-abstracted trajectory features like direction of motion; • No explicit assumptions of 3D geometry, no explicit dynamics model, no specialized renderer, and few a priori modeling assumptions about the objects being studied; and • Simple, scalable modules (for inference and rendering) to enable large-scale use.

Overview

A. SIMONe decomposes and factorizes a sequence **X** into scene content ("object latents", constant across a sequence) and view/global content ("frame latents", one per frame) without supervision. Spatio-temporal inference naturally allows stable object tracking.

B. Object latents inferred from a sequence **X** can be re-composed with the frame latents of a different (i.i.d.) sequence X' to generate a consistent rendering of the same scene (i.e. objects and their properties, relative arrangements, and segmentation assignments) from entirely different viewpoints.

Related Work

- 1) Scene decomposition models (e.g. MONet, IODINE, GENESIS, SPACE, AIR): Decompose images into component objects and object features.
- 2) Multi-view scene rendering models (e.g. GQN, SRNs, NeRF): Decompose allocentric scene structure and a variable viewpoint.
- Simultaneous localization and mapping: Infer scene 3) representations by exploring environment. Object-centric and learning based solutions are active research areas.

Model

- Latent structure: K object latents are invariant across all frames in the sequence, and expected to summarize information over time. T frame latents are invariant across objects but vary with time.
- Generative process: Each pixel is modeled as a GMM with K components. The decoder is queried for a specific time-step t and pixel location I, and is a simple MLP.
- Inference: Spatio-temporal data is jointly processed via transformers. Feature maps attend to one another across space and time.
- Loss: The model is trained using a β -weighted ELBO with two KL terms and a reconstruction loss.

Segmentation performance

We evaluate models on still images via Static ARI-F. We also evaluate them across space and time via Video ARI-F, penalizing models which fail to track objects stably.

	Static ARI-F			Video ARI-F			
	MONet	SA	S-IODINE	MONet	SA	S-IODINE	SIMONe
Objects Room 9	0.886	0.784	0.695	0.865	0.066	0.673	0.936
	(±0.061)	(±0.138)	(± 0.007)	(±0.007)	(±0.014)	$(\pm 0.0.002)$	(±0.010)
CATER	0.937	0.923	0.728	0.412	0.073	0.668	0.918
	(± 0.004)	(± 0.076)	(±0.032)	(±0.012)	(± 0.006)	(±0.033)	(±0.036)
Playroom	0.647	0.653	0.439	0.442	0.059	0.356	0.800
	(±0.012)	(±0.024)	(±0.009)	(±0.010)	(±0.002)	(±0.006)	(±0.043)

Temporal abstraction

Object representations

View representations

Quantitative analysis

Predicting camera pose from frame latents:

	$Linear(\mathbf{f}_t)$	$MLP(\mathbf{f}_t)$	$\mathrm{MLP}(\mathbf{o}_1,,\mathbf{o}_K)$
Camera location	0.832	0.944	-0.017
Camera orientation (Rodrigues)	0.800	0.954	0.272

toy carriage

shelves

purple container

	$MLP(\mathbf{o}_k)$	$MLP(\mathbf{o}_k, t)$	$MLP(\mathbf{o}_k, \mathbf{f}_t, t)$	$MLP(\{\mathbf{o}_j: j \neq k\})$
Trained on all objects	0.710 ± 0.006	0.871 ± 0.006	0.876 ± 0.003	-0.062 ± 0.006
Trained on moving objects	0.724 ± 0.007	0.894 ± 0.004	0.898 ± 0.005	-0.022 ± 0.025

green book

red rubber duck