
INTERMEDIATE LAYERS MATTER IN MOMENTUM 

CONTRASTIVE SELF SUPERVISED LEARNING

SUMMARY

• Bringing intermediate layers’ representations of two 

augmented versions of an image closer together helps to 

improve the momentum contrastive (MoCo) method

• We show this improvement for two loss functions: the 

mean squared error (MSE) and Barlow Twin’s loss 

between the intermediate layer representations; and 

three datasets: NIH-Chest Xrays, Breast Cancer 

Histopathology, and Diabetic Retinopathy 

• Improved MoCo has large gains (~5%) in the 

performance especially when we are in a low-labeled 

regime (1% data is labeled)

• Improved MoCo learns meaningful features earlier in the 

model and also has high feature reuse.

MoCo FOR MEDICAL DATASETS

• MoCo is widely adopted by medical imaging research 

community.

• MoCo differentiates from others by having an additional 

bank of negative examples.

• This helps the model to learn even when the batch sizes 

are small. 

• For medical images, this is important because medical 

images generally have high resolution and large batch 

sizes are computationally infeasible.

• Many recent works ([1,2,3,4]) have used MoCo for 

various tasks therefore we focus our study on MoCo.

PROPOSED METHOD

• The schematic for our proposed method:

PROPOSED METHOD

• Encoder should be encouraged to learn augmentation-

invariant representations not only at the end but also 

for the intermediate layers.

• We use MSE and Barlow Twins loss functions to 

ensure closeness of intermediate representations

• Intermediate loss function have shown to help by 

regularizing the model or improving gradient flow.

• In our case, it helps to learn augmentation-invariant 

features early in the model thereby learning high 

quality features for performing the downstream task.

• We run all our experiments with ResNet-50 encoder. 

We apply the loss function after each of the four 

ResNet blocks in ResNet-50 architecture.

DATASETS

• We empirically verify our proposed approach with 

three diverse medical imaging datasets: NIH-Chest 

Xrays, Breast Cancer Histopathology, and Diabetic 

Retinopathy.

• Classification is the downstream task for each dataset.

RESULTS

• Performance after fine tuning only the final linear 

layer. MoCo+MSE approach outperforms the standard 

MoCo for the three datasets.

• Performance after fine tuning the entire encoder for 

different percentage of label data. For low labeled 

data regime (1% and 6% of labeled data), our 

proposed approach improves over standard MoCo

performance by ~5% when averaged across three 

datasets.

ANALYSIS OF FEATURES

• Feature reuse: Higher feature reuse indicates higher feature 

quality. We measure feature reuse by measuring feature 

similarity before and after fine tuning them using a labeled 

dataset. Our approach shows higher feature reuse as 

compared to the standard MoCo for all three datasets.

• We also see that initial layers have higher feature reuse 

which indicate SSL helps to learn low-level image statistics.

• Layer-wise Probing: Our approach also learns more useful 

features earlier in the model. 
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