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Label traction Supervised MoCo MoCo + MSE ~ MoCo + Barlow Twins
SUMMARY PROPOSED METHOD NIH Chest X-ray (AUC (95% CI))
° Brln |n |ntermed|ate Ia ers’ re resentatlons Of two . . i 100% 79.8 (79.2-80.3) 82.4 (81.7-83.0) 81.5 (80.9-82.1) 80.0 (79.5-80.7)
g g Y p Encoder should be enCOuraged to learn augmentatlon 6% 635.2 (64.6-65.8) 69.8 (69.3-70.4) 70.5 (69.9-71.0) 70.0 (69.2-70.6)

augmented versions of an image closer together helps to

_ _ Invariant representations not only at the end but also 1%
Improve the momentum contrastive (MoCo) method

for the intermediate layers.

57.8 (57.2-58.4) 59.2 (58.6-59.9) 61.4 (60.7-62.0)
Diabetic Retinopathy (AUC (95% CI))

62.9 (62.3-63.5)

* We show this improvement for two loss functions: the . We use MSE and Barlow Twins loss functions to 100% 04.1 (94.1-94.2)  94.6 (94.3-94.6)  96.6 (96.6-96.7) 95.7 (95.7-95.8)
mean Squared error (MSE) and Barlow Twin’s loss ensure closeness of intermediate representations 6% 69.1 (69.0-69.2) 92.4(92.2-92.6) 95.1 (94.8-95.2) 94.0 (94.0-94.3)
° Breast Cancer Histopathology (F1-score (95% CI

three datasets: NIH-Chest Xrays, Breast Cancer - . . . I N B P T e |
Listonatholoav. and Diabetic Retinonath regularizing the model or improving gradient flow. 100% 82.7 (82.4-83.1) 829 (82.6-83.3) 85.7 (85.4-86.0)  86.4 (86.1-86.7)
Istopa gy, patny . . : 6% 82.7 (82.4-83.1) 82.8 (82.4-83.2) 84.6 (84.2-84.9) 84.5 (84.2-84.8)

. o * In our case, It helps to learn augmentation-invariant _

* Improved MoCo has large gains (~5%) In the 1% 80.6 (80.3-81.0) 82.8 (82.5-83.2) 85.1 (84.7-85.4)  84.4(84.1-84.7)

features early in the model thereby learning high
guality features for performing the downstream task.

* We run all our experiments with ResNet-50 encoder.
We apply the loss function after each of the four
ResNet blocks in ResNet-50 architecture.

performance especially when we are in a low-labeled
regime (1% data Is labeled)

* Improved MoCo learns meaningful features earlier in the
model and also has high feature reuse.

ANALYSIS OF FEATURES

« Feature reuse: Higher feature reuse indicates higher feature
guality. We measure feature reuse by measuring feature
similarity before and after fine tuning them using a labeled
dataset. Our approach shows higher feature reuse as
compared to the standard MoCo for all three datasets.

MoCo FOR MEDICAL DATASETS DATASETS tar _
We also see that initial layers have higher feature reuse

 MoCo is widely adopted by medical imaging research . We empirically verify our proposed approach with )

community. : 7 _ which indicate SSL helps to learn low-level image statistics.
_ 4 _ | - three diverse medical imaging datasets: NIH-Chest R T
e MoCo d|fferer!t|ates from others by havmg an additional Xl'ayS, Breast Cancer Histopathology, and Diabetic Method Block 1 Block 2 Block3Nu_l?lg;l;:)|(_Z]e;t(opr:;?;tzanclilioncl;i]C)Block2 Block 3 Block 4 | Performance
bank of negative examples. Retinopathy. WRLSEE G OB OS G6 | HA | b AW O e | s
° " " . ) . MoCo + Barlow Twins 0.99 0.98 0.76 0.38 62.9 0.97 0.92 0.79 0.41 70.0
This helps the model to learn even when the batch sizes . cjassification is the downstream task for each dataset. Disbstc Retnapathy (Performarce in AUC)
are Sma” MoCo 0.87 0.80 0.51 0.19 88.1 0.81 0.69 0.50 0.14 924
' MoCo + MSE 0.96 0.78 0.33 0.26 93.6 0.95 0.73 0.25 0.12 05.1
- For medical images, this is important because medical SESULTS e Caner oo (ofomanes o
images generally have high resolution and large batch | | S VoCosVSE 07 om os  oa2 | w1 | 075 0w  0ss o3 | s
sizes are Computa’[ionally infeasible. o lPerforrI(]/Iarge a|\1;1|:§rEf|ne tun”’I}]g On|y :c:he f|n?]_| ||r]ea£l ; Clo(‘o+Bzu'low Tw-ms 0.; l(;74 0.340 0.36 84.4 h0.76| 0.7|@ 058  0.38 84.5 o
ayer. MoCo+ approach outperrorms the stanaar ° ayer-wise rFrooning. our approacn also iearns more usetu
« Many recent works ([1,2,3,4]) have used MoCo for y PP P y ~robing P
. MoCo for the three datasets. features earlier in the model.
various tasks therefore we focus our study on MoCao. o
Dataset / Method MoCo MoCo + MSE Barlow Twins Supervised Block 1 Block 2 Block 3 Block 4
NIH Chest X-ray 74.4 74.8 73.5 79.8 s s 1 ol e il
PROPOSED METHOD (AUC (95% CI)) (73.9-75.0)  (74.2-754)  (72.9-74.0) | (79.2-80.3) MoCo 58.8 (58.4-59.3)  59.5(59.0-60.0)  65.3 (64.8-65.8)  74.4 (73.9-75.0)
_ _ Diabetic Retinopathy 74.6 84.8 79.7 4.1 MoCo + MSE 57.6 (56.9-58.3)  59.9 (59.4-60.4)  69.2 (68.70-69.7) 74.8 (74.2-75.4)
* The schematic for our proposed method: _ (é\UC (9}51% CI))h 1 (74.85(;774.7) (84.862-§55.0) (79562-739.7) (94.8 12-974-2) MoCo + Barlow Twins 566 (36.2-57.0) 56.5(56.1-56.9)  64.2 (63.7-64.6)  73.5 (72.9-74.0)
reast Cancer Histopathology ; . % : : PE—— —
| embedding  projection (Fl-score (95% CI)) (80.4-81.1)  (82.2-82.9)  (82.0-827) | (82.4-83.1) ik 1, et i
view MoCo 68.1 (68.0-68.1) 68.2(68.2-68.3)  69.2 (69.2-69.5)  74.6 (74.5-74.7)
MoCo + MSE 68.3 (68.2-68.3)  70.1(70.0-70.1)  71.2 (71.1-71.3)  84.8 (84.6-85.0)

Y H ‘ }— - Performance after fine tuning the entire encoder for
{ F—— ] different percentage of label data. For low labeled
. data regime (1% and 6% of labeled data), our
proposed approach improves over standard MoCo
performance by ~5% when averaged across three
datasets.

67.2 (67.2-67.3) 68.6 (68.5-68.7)  69.9 (69.4-69.9)
Breast Cancer Histopathology (F1-score (95% CI))

80.9 (80.5-81.3) 81.1(80.8-81.5) 8I1.1(80.7-81.5)
80.6 (80.2-81.0) 81.3 (81.0-81.7)  82.7 (82.4-83.0)
81.0 (90.7-81.4) 81.1(80.7-81.5) 82.2(81.9-82.6)

MoCo + Barlow Twins 79.7 (79.6-79.7)

MoCo
MoCo + MSE

MoCo + Barlow Twins

80.7 (80.4-81.1)
82.5 (82.2-82.9)
82.3 (82.0-82.7)
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