

SUMMARY

- Bringing intermediate layers' representations of two augmented versions of an image closer together help improve the momentum contrastive (MoCo) method
- We show this improvement for two loss functions: the mean squared error (MSE) and Barlow Twin's loss between the intermediate layer representations; and three datasets: NIH-Chest Xrays, Breast Cancer Histopathology, and Diabetic Retinopathy
- Improved MoCo has large gains (~5%) in the performance especially when we are in a low-labeled regime (1% data is labeled)
- Improved MoCo learns meaningful features earlier in model and also has high feature reuse.

MoCo FOR MEDICAL DATASETS

- MoCo is widely adopted by medical imaging research community.
- MoCo differentiates from others by having an additio bank of negative examples.
- This helps the model to learn even when the batch s are small.
- For medical images, this is important because medic images generally have high resolution and large bate sizes are computationally infeasible.
- Many recent works ([1,2,3,4]) have used MoCo for various tasks therefore we focus our study on MoCo

PROPOSED METHOD

• The schematic for our proposed method:

INTERMEDIATE LAYERS MATTER IN MOMENTUM **CONTRASTIVE SELF SUPERVISED LEARNING**

Aakash Kaku, Sahana Upadhya, Narges Razavian **NYU Center for Data Science**

PROPOSED METHOD

ps to	•	 Encoder should be encouraged to learn augmentation- invariant representations not only at the end but also for the intermediate layers. 								
e	•	 We use MSE and Barlow Twins loss functions to ensure closeness of intermediate representations 								
	•	Intermediate loss regularizing the	s functior model o	n have sho r improvi r	wn to help ng gradiei	by nt flow .				
d	•	In our case, it he features early in quality features f	lps to lea 1 the mo or perfor	arn augme del thereb ming the c	entation-in by learning lownstrear	nvariant high m task.				
n the	•	 We run all our experiments with ResNet-50 encoder. We apply the loss function after each of the four ResNet blocks in ResNet-50 architecture. 								
	D	ATASETS								
sh Snal	•	We empirically verify our proposed approach with three diverse medical imaging datasets: NIH-Chest Xrays , Breast Cancer Histopathology , and Diabetic Retinopathy .								
sizes	•	Classification is t	the down	stream tas	sk for each	n dataset.				
cal ch	R	ESULTS	-			_				
	 Performance after fine tuning only the final linear layer. MoCo+MSE approach outperforms the standard 									
).	17				MoCo +	0				
	8	Dataset / Method	MoCo	MOCO + MSE	Barlow Twins	Supervised				
		(AUC (95% CI))	/4.4 (73.9-75.0)	/4.8 (74.2-75.4)	73.5 (72.9-74.0)	79.8 (79.2-80.3)				
	33 <u>-</u>	Diabetic Retinopathy	74.6	84.8	79.7	94.1				
		(AUC (95% CI))	(74.5-74.7)	(84.6-85.0)	(79.6-79.7)	(94.1-94.2)				
		Teast L ancer Histonathology	XU /		XII	X//				

Performance after fine tuning the entire encoder for different percentage of label data. For low labeled data regime (1% and 6% of labeled data), our proposed approach **improves** over standard MoCo performance by ~5% when averaged across three datasets.

(82.2 - 82.9)

(82.0-82.7)

(82.4 - 83.1)

(80.4 - 81.1)

(F1-score (95% CI))

•

CENTER FOR DATA SCIENCE

Label fraction	Supervised	MoCo	MoCo + MSE	MoCo + Barlow Twins						
	NI	H Chest X-ray (AU	C (95% CI))							
100%	79.8 (79.2-80.3)	82.4 (81.7-83.0)	81.5 (80.9-82.1)	80.0 (79.5-80.7)						
6%	65.2 (64.6-65.8)	69.8 (69.3-70.4)	70.5 (69.9-71.0)	70.0 (69.2-70.6)						
1%	57.8 (57.2-58.4)	59.2 (58.6-59.9)	61.4 (60.7-62.0)	62.9 (62.3-63.5)						
Diabetic Retinopathy (AUC (95% CI))										
100%	94.1 (94.1-94.2)	94.6 (94.3-94.6)	96.6 (96.6-96.7)	95.7 (95.7-95.8)						
6%	69.1 (69.0-69.2)	92.4 (92.2-92.6)	95.1 (94.8-95.2)	94.0 (94.0-94.3)						
1%	65.5 (65.4-65.6)	88.1 (88.1-88.4)	93.6 (93.2-93.6)	92.5 (92.2-92.7)						
Breast Cancer Histopathology (F1-score (95% CI))										
100%	82.7 (82.4-83.1)	82.9 (82.6-83.3)	85.7 (85.4-86.0)	86.4 (86.1-86.7)						
6%	82.7 (82.4-83.1)	82.8 (82.4-83.2)	84.6 (84.2-84.9)	84.5 (84.2-84.8)						
1%	80.6 (80.3-81.0)	82.8 (82.5-83.2)	85.1 (84.7-85.4)	84.4 (84.1-84.7)						

ANALYSIS OF FEATURES

Feature reuse: Higher feature reuse indicates higher feature quality. We measure feature reuse by measuring feature similarity before and after fine tuning them using a labeled dataset. Our approach shows higher feature reuse as compared to the standard MoCo for all three datasets.

We also see that initial layers have higher feature reuse which indicate SSL helps to learn low-level image statistics.

		1% labe	eled data				6% labe	eled data		
Method	Block 1	Block 2	Block 3	Block 4	Performance	Block 1	Block 2	Block 3	Block 4	Performance
			N	IIH Chest 2	X-ray (Performa	nce in AU	C)			1 0
MoCo	0.81	0.80	0.57	0.41	59.2	0.72	0.75	0.66	0.39	69.8
MoCo + MSE	0.97	0.83	0.65	0.42	61.4	0.97	0.84	0.55	0.43	70.5
MoCo + Barlow Twins	0.99	0.98	0.76	0.38	62.9	0.97	0.92	0.79	0.41	70.0
			Dia	betic Retin	opathy (Perform	nance in A	UC)			
MoCo	0.87	0.80	0.51	0.19	88.1	0.81	0.69	0.50	0.14	92.4
MoCo + MSE	0.96	0.78	0.33	0.26	93.6	0.95	0.73	0.25	0.12	95.1
MoCo + Barlow Twins	0.98	0.83	0.58	0.24	92.5	0.93	0.75	0.50	0.15	94.0
			Breast Ca	ncer Histo	pathology (Perfe	ormance in	F1-score)			
MoCo	0.50	0.55	0.98	0.16	82.8	0.57	0.48	0.97	0.19	82.8
MoCo + MSE	0.77	0.82	0.58	0.42	85.1	0.75	0.79	0.55	0.31	84.6
MoCo + Barlow Twins	0.77	0.74	0.54	0.36	84.4	0.76	0.76	0.58	0.38	84.5

Layer-wise Probing: Our approach also learns more useful features earlier in the model.

2	Block 1	Block 2	Block 3	Block 4					
NIH Chest X-ray (AUC (95% CI))									
MoCo	58.8 (58.4-59.3)	59.5 (59.0-60.0)	65.3 (64.8-65.8)	74.4 (73.9-75.0)					
MoCo + MSE	57.6 (56.9-58.3)	59.9 (59.4-60.4)	69.2 (68.70-69.7)	74.8 (74.2-75.4)					
MoCo + Barlow Twins	56.6 (56.2-57.0)	56.5 (56.1-56.9)	64.2 (63.7-64.6)	73.5 (72.9-74.0)					
Diabetic Retinopathy (AUC (95% CI))									
MoCo	68.1 (68.0-68.1)	68.2 (68.2-68.3)	69.2 (69.2-69.5)	74.6 (74.5-74.7)					
MoCo + MSE	68.3 (68.2-68.3)	70.1 (70.0-70.1)	71.2 (71.1-71.3)	84.8 (84.6-85.0)					
MoCo + Barlow Twins	67.2 (67.2-67.3)	68.6 (68.5-68.7)	69.9 (69.4-69.9)	79.7 (79.6-79.7)					
Breast Cancer Histopathology (F1-score (95% CI))									
MoCo	80.9 (80.5-81.3)	81.1 (80.8-81.5)	81.1 (80.7-81.5)	80.7 (80.4-81.1)					
MoCo + MSE	80.6 (80.2-81.0)	81.3 (81.0-81.7)	82.7 (82.4-83.0)	82.5 (82.2-82.9)					
MoCo + Barlow Twins	81.0 (90.7-81.4)	81.1 (80.7-81.5)	82.2 (81.9-82.6)	82.3 (82.0-82.7)					

Reference

1. Ciga, O., Martel, A. L., and Xu, T. Self supervised contrastive learning for digital histopathology.

2. Dehaene, O et al. Self-supervision closes the gap between weak & strong supervision in histology.

3. Sowrirajan, H et al. Mococxr: Moco pretraining improves representation and transferability of chest x-ray models. 4. Azizi, S., et al. Big self-supervised models advance medical image classification.