Anomalous Region Detection in Time Series with Local Neural Transformations (LNT)

Tim Schneider, Chen Qiu, Maja Rudolph

Task & Goals

- Find anomalous regions within a time series (sub-sequence level)
- Many important applications in health and industry
- **Goal:** use performance on self-supervision task to score anomalies
- Very successful on image domain, e.g. transformation prediction with rotations or color distortions

"How to find good transformations for time series anomaly detection?" → learn from data

Transformation Learning Principles

Not every function learned from data is a valid transformation / view. We follow / extend ideas of *Qiu et. al (2021)* to guide the learning with principles.

Propose three principles for transformation learning:

- **Semantics:** Views produced by learned transformations should share significant semantic information with the original sample.
- **Diversity:** Learned transformations should produce diverse views for each sample, resulting in varietal and difficult self-supervision tasks that need strong semantic features to be solved.
- Locality: The transformations should affect the data only in a local neighbourhood, while respecting the global context of the series.

References

[1] Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., and Rudolph, M. Neural transformation learning for deep anomaly detection beyond images. arXiv preprint arXiv:2103.16440, 2021

[2] Oord, A. v. d., Li, Y., and Vinyals, O. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

Architecture Overview of LNT

 $\mathcal{L} = \mathcal{L}_{CPC} + \lambda \cdot \mathcal{L}_{DDCL}$

How transformations are trained?

Joint training of encoder (CPC) and Local Neural Transformations with two contrastive losses and exponentiated similarity measures f,h:

$$\mathcal{L}_{\text{CPC}} = -\mathbb{E}_{\mathcal{Z}} \left[\log \frac{f_k(z_{t+k}, c_t)}{\sum_{z_j \in Z} f_k(z_j, c_t)} \right]$$

following *Oord et. al (2018)* and a new **Deterministic Dynamic Contrastive** Loss (DDCL) for training transformations

$$\mathcal{L}_{\text{DDCL}} = -\mathbb{E}_{\mathcal{Z}} \left[\sum_{k=1}^{K} \sum_{t=1}^{T} \sum_{l \in L} \ell_{t}^{(k,l)} \right] \qquad z_{t}^{(l)} \coloneqq \mathcal{T}_{l}(z_{t})$$
$$\ell_{t}^{(k,l)} = \log \frac{h(z_{t+k}^{(l)}, W_{k}c_{t})}{h(z_{t+k}^{(l)}, W_{k}c_{t}) + \sum_{m \neq l} h(z_{t+k}^{(l)}, z_{t+k}^{(m)})}$$

Principles can be interpreted as "pushing" and "pulling" different representations in latent space:

University of Stuttgart Germany

How anomalies are scored / predicted ?

→ Reuse DDCL loss for scoring (performance measure). Different loss contribution need to be combined:

→ Backward scoring smoothes and displaces scores: choose forward scoring
→ Extract the maximum likelihood state sequence in an HMM for binary decision

First Experimental Results with LibriSpeech

LibriSpeech dataset with artificial anomaly regions by randomly placed additive pure sine tones of varying frequency and length. → LNT outperforms several deep learning baselines:

→ Dropping biases and joint training are beneficial for the performance:

Next Steps / Current Work:

- Domain transfer to datasets with (real) annotated outliers / anomalies
- Visualization / Interpretation of learned transformations