Improving OOD prediction by disentangling ODE parameters from dynamics

¹Department of Bioengineering, Imperial College London ²Department of Aeronautics, Imperial College London

MOTIVATION

Deep networks are becoming increasingly accurate in modeling dynamical more systems, but generalization is still elusive even in simple cases.

For example, predicting the trajectory of a swinging pendulum with unseen length is far from trivial for NNs.

DISENTANGLEMENT IN VAEs

Disentangling the latent space of Variational Autoencoders^[1] aims to capture the factors of variation in the data with distinct latents.

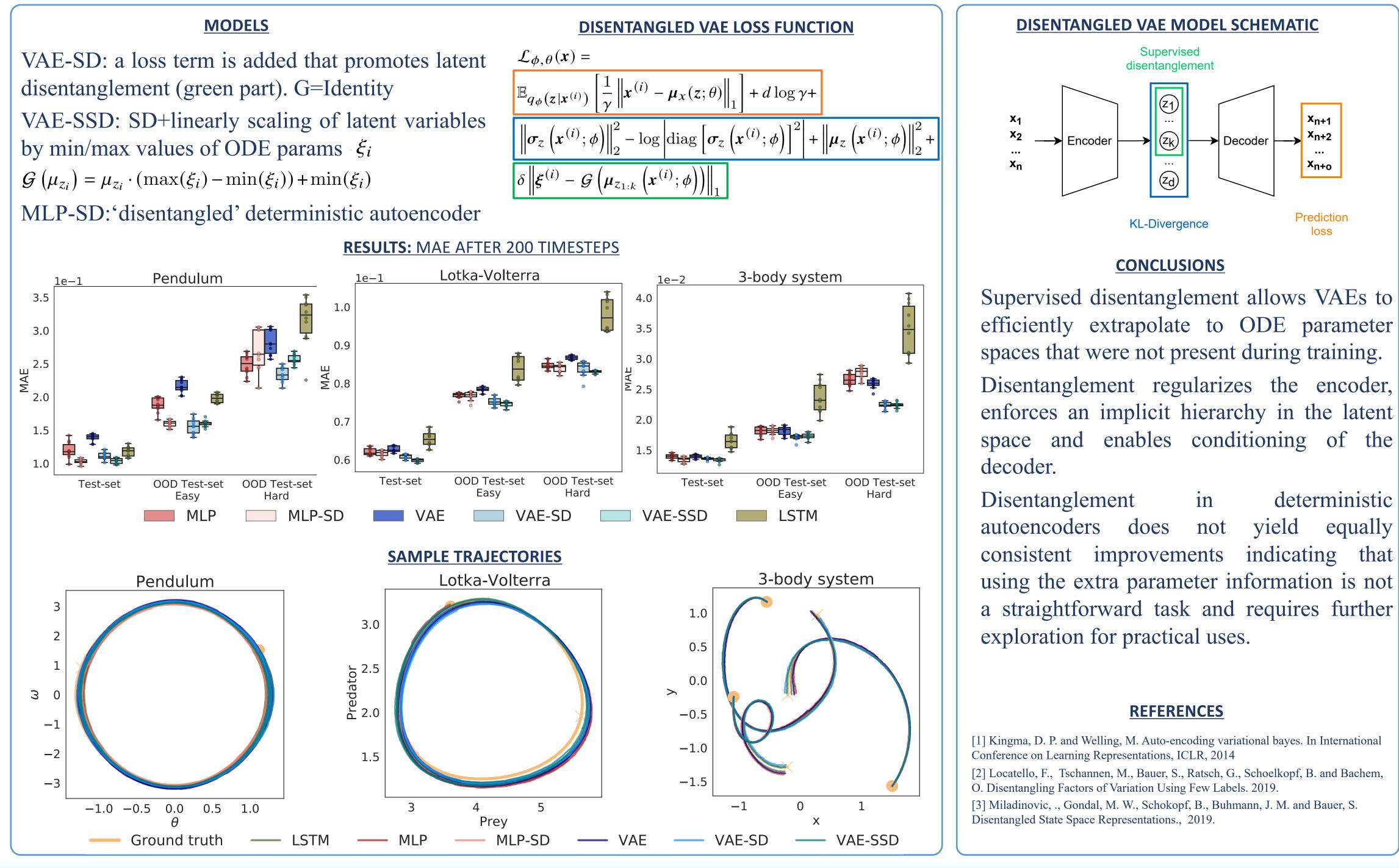
It can help to capture out-of-distribution characteristics in image modelling^[2].

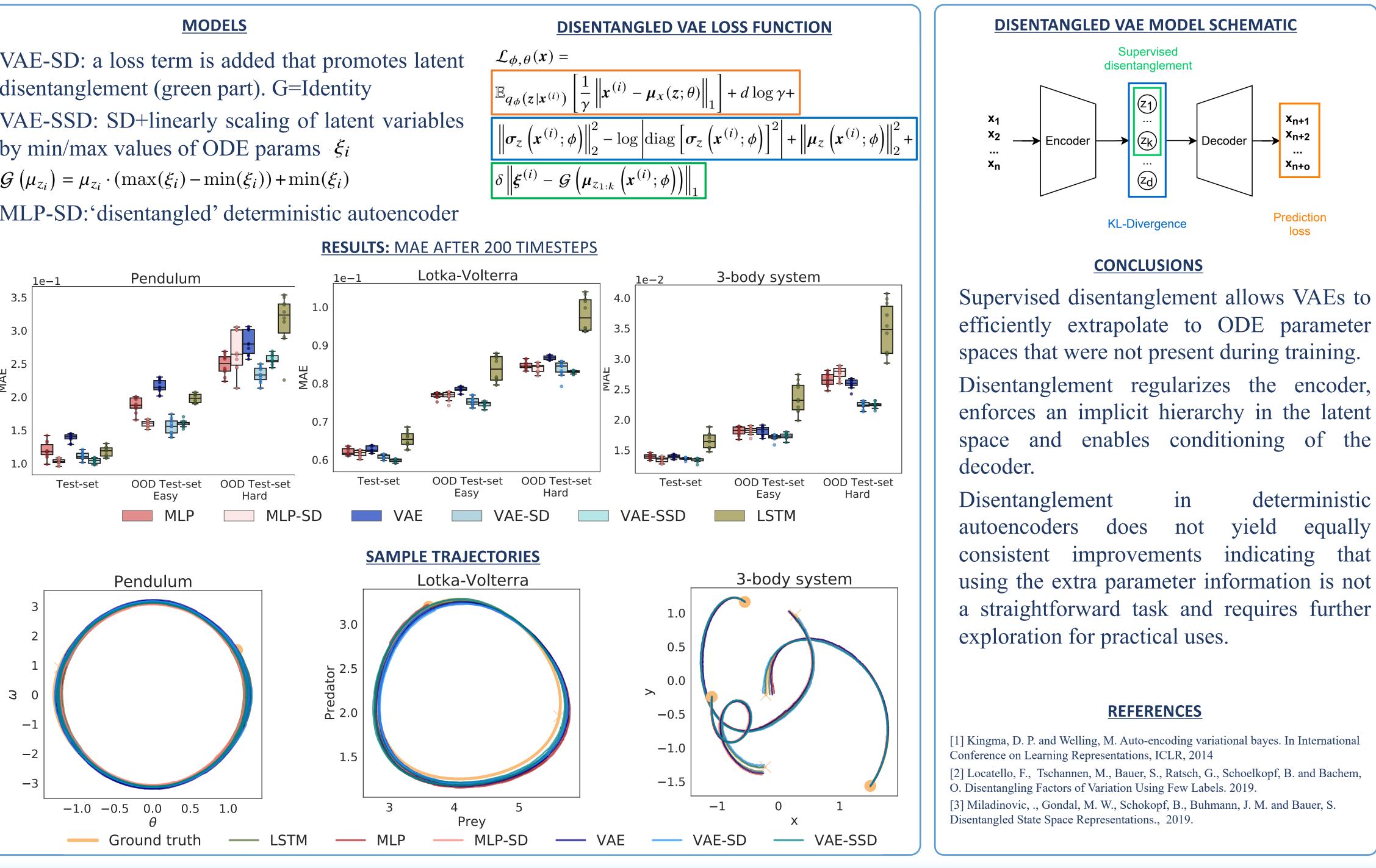
Previous attempts in disentanglement for dynamical systems have focused on the unsupervised setting^[3].

ODE PARAMETERS AS FACTORS OF VARIATION

Treating ODEs parameters as factors of variation allows employing latent disentanglement using ground truth values from simulated data.

 $\ddot{\theta} + \frac{g}{\ell}\sin\theta = 0$ Simple pendulum: $\dot{x} = \alpha x - \beta x y$ Lotka-Volterra: $\dot{y} = \delta x y - \gamma y$ $\bar{m}_i \frac{d\vec{v}_i}{dt} = K_1 \sum_j \frac{\bar{m}_i \bar{m}_j}{\bar{r}_{ij}^3} \overrightarrow{r_{ij}}$ **MODELS**





3-body system: $\frac{d\vec{x}_i}{d\bar{t}} = K_2 \vec{v}_i, i \in \{1, 2, 3\}$ Stathi Fotiadis¹, Mario Lino², Chris Cantwell², Anil Bharath¹

deterministic indicating that